Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/36087
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRendón Hurtado, Nestor David-
dc.contributor.authorRamírez García, Edison-
dc.contributor.authorIsaza Narváez, Claudia Victoria-
dc.contributor.authorGiraldo Zuluaga, Jhony Heriberto-
dc.contributor.authorBouwmans, Thierry-
dc.contributor.authorRodríguez Buriticá, Susana-
dc.date.accessioned2023-07-31T16:56:47Z-
dc.date.available2023-07-31T16:56:47Z-
dc.date.issued2023-
dc.identifier.issn0952-1976-
dc.identifier.urihttps://hdl.handle.net/10495/36087-
dc.description.abstractABSTRACT: Knowing the number of clusters a priori is one of the most challenging aspects of unsupervised learning. Clustering Internal Validity Indices (CIVIs) evaluate partitions in unsupervised algorithms based on metrics like compactness, separation, and density. However, specialized CIVIs for specific applications have been designed, and there is no general CIVI that works in all scenarios. The absence of CIVIs based on crisp uncertainty metrics is especially critical in decision-making processes that involve ambiguity, non-convex distributions, outliers, and overlapping data. To address this problem, we propose a novel Uncertainty Fréchet (UF) CIVI that assesses the certainty of a well-defined partition. UF leverages uncertainty fingerprints based on Type-2 fuzzy Gaussian Mixture Models (T2FGMM) and the Fréchet distance between clusters to introduce a metric that evaluates partition quality. We integrate UF into a merging methodology that combines similar clusters within a partition, allowing us to determine the number of clusters without the need to run the clustering algorithms iteratively as other CIVIs require. We undertake a comprehensive evaluation of our proposal on 5,250 convex, 36 non-convex synthetic datasets, and five benchmark real datasets. In addition, we apply UF in a real-world scenario that involves high uncertainty: Passive Acoustic Monitoring (PAM) of ecosystems, which aims to study ecological transformations through acoustic recordings. The results show that UF exhibits notable performance in synthetic and real-world scenarios, obtaining an Adjusted Mutual Information (AMI) score higher than 0.88 for normal, uniform, gamma, and triangular distribution datasets. In the PAM application, UF identifies the transformation of ecosystems through sound using clustering algorithms and UF, achieving an F1 score of 0.84. Therefore, results show that the UF index is a suitable tool for researchers and practitioners working with highly uncertain data.spa
dc.format.extent14spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherElsevierspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleUncertainty clustering internal validity assessment using Fréchet distance for unsupervised learningspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupSistemas Embebidos e Inteligencia Computacional (SISTEMIC)spa
dc.identifier.doi10.1016/j.engappai.2023.106635-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1873-6769-
oaire.citationtitleEngineering Applications of Artificial Intelligencespa
oaire.citationstartpage1spa
oaire.citationendpage14spa
oaire.citationvolume124spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.publisher.placeSwansea, Reino Unidospa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.proposalUnsupervised learningspa
dc.subject.proposalClustering validityspa
dc.subject.proposalFréchet distancespa
dc.subject.proposalType-2 fuzzy setsspa
dc.description.researchgroupidCOL0010717spa
dc.relation.ispartofjournalabbrevEng. Appl. Artif. Intell.spa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RendonNestor_2023_FrechetDistanceUnsupervisedLearning.pdfArtículo de investigación1.45 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons