Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/36240
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGuerrero Muriel, María José-
dc.contributor.authorBedoya Acevedo, Carol-
dc.contributor.authorLópez Hincapié, José David-
dc.contributor.authorIsaza Narváez, Claudia Victoria-
dc.contributor.authorDaza Rojas, Juan Manuel-
dc.date.accessioned2023-08-16T19:36:51Z-
dc.date.available2023-08-16T19:36:51Z-
dc.date.issued2023-
dc.identifier.citationM. J. Guerrero, C. L. Bedoya, J. D. López, J. M. Daza, and C. Isaza, “Acoustic animal identification using unsupervised learning,” Methods Ecol. Evol., vol. 14, no. 6, pp. 1500–1514, 2023, doi: 10.1111/2041-210X.14103.spa
dc.identifier.urihttps://hdl.handle.net/10495/36240-
dc.description.abstractABSTRACT: 1. Passive acoustic monitoring is usually presented as a complementary approach to monitoring wildlife communities and assessing ecosystem conditions. Automaticspecies detection methods support biodiversity monitoring and analysis by providing information on the presence–absence of species, which allows understanding the ecosystem structure. Therefore, different alternatives have been proposed to identify species. However, the algorithms are parameterized to identify specific species. Analysing multiple species would help to monitor and quantify biodiversity, as it includes the different taxonomic groups present in the soundscape. 2. We present an unsupervised methodology for multi-species call recognition from ecological soundscapes. The proposal is based on a clustering algorithm, specifically the learning algorithm for multivariate data analysis (LAMDA) 3pi algorithm, which automatically suggests the number of clusters associated with the sonotypes. Emphasis was made on improving the segmentation of the audio to analyse the whole soundscape without parameterizing the algorithm according to each taxonomic group. 3. To estimate the performance of our proposal, we used four datasets from different locations, years and habitats. These datasets contain sounds from the four major taxonomic groups that dominate terrestrial soundscapes (birds, amphibians, mammals and insects) in audible and ultrasonic spectra. The methodology presents performances between 75% and 96% in presence–absence species recognition. 4. Using the clusters proposed by our methodology, the whole soundscape biodiversity was measured and compared with the estimate of four acoustic indices (ACI, NP, SO and BI). Our approach performs biodiversity assessments similar to acoustic indices with the advantage of providing information about acoustic communities without the need for prior knowledge of the species present in the audio recordings.spa
dc.format.extent15spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherWiley; British Ecological Societyspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleAcoustic animal identification using unsupervised learningspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupSistemas Embebidos e Inteligencia Computacional (SISTEMIC)spa
dc.identifier.doi10.1111/2041-210X.14103-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn2041-210X-
oaire.citationtitleMethods in Ecology and Evolutionspa
oaire.citationstartpage1500spa
oaire.citationendpage1514spa
oaire.citationvolume14spa
oaire.citationissue6spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.publisher.placeHoboken, Estados Unidosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.decsVocalización Animal-
dc.subject.decsVocalization, Animal-
dc.subject.decsEspecies-
dc.subject.decsSpecies-
dc.subject.lembSonido-
dc.subject.lembSound-
dc.subject.lembDiversidad biológica-
dc.subject.lembBiological diversity-
dc.subject.proposalPaisaje sonorospa
dc.description.researchgroupidCOL0010717spa
dc.relation.ispartofjournalabbrevMethods. Ecol. Evol.spa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
GuerreroMaria_2023_AcousticAnimalIdentification.pdfArtículo de investigación4.82 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons