Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/38444
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorVargas Bonilla, Jesús Francisco-
dc.contributor.authorBotero Valencia, Juan Sebastián-
dc.contributor.authorLópez Giraldo, Francisco Eugenio-
dc.date.accessioned2024-03-03T17:18:34Z-
dc.date.available2024-03-03T17:18:34Z-
dc.date.issued2015-
dc.identifier.urihttps://hdl.handle.net/10495/38444-
dc.description.abstractABSTRACT: Three types of artificial light sources work with electricity: incandescent, fluorescent and LED. These sources require characterization processes to allow selecting the most suitable for the application, to evaluate their capacity or more recently to tune and adjust their replicability using control algorithms. Therefore, it has been necessary to develop indices that represent these capabilities. The Color Rendering Index (CRI) is a measure used to characterize the color reproducibility of a light source in comparison to an ideal light source. The Correlated Color Temperature (CCT) is used to characterize light sources by representing the color as the temperature of a black body in Kelvin that shows nearly the same chromaticity as the analyzed light source. Using spectral information to determine the values in the XYZ space and deriving the calculation described in the standard is the best way to estimate the value of the CCT and the CRI. In this work, we implement a method to classify light sources and to select an estimation model of the CRI and the CCT using a low cost RGB sensor. The model estimation has been developed in this work and a separated algorithm for each source type has been built. The results show that using a K-Nearest Neighbor classifier, the error resulted less than $3.6%$. The error of the model estimation for the LED was 1.8%, for fluorescent light sources 0.09% and 1.2% for incandescent light sources.spa
dc.format.extent20 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSciendospa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleClassification of artificial light sources and estimation of Color Rendering Index using RGB sensors, K Nearest Neighbor and Radial Basis Functionspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupSistemas Embebidos e Inteligencia Computacional (SISTEMIC)spa
dc.identifier.doi10.21307/ijssis-2017-817-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1178-5608-
oaire.citationtitleInternational Journal on Smart Sensing and Intelligent Systemsspa
oaire.citationstartpage1505spa
oaire.citationendpage1520spa
oaire.citationvolume8spa
oaire.citationissue3spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.publisher.placeNueva Zelandaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.lembFuentes luminosas-
dc.subject.lembLight sources-
dc.subject.agrovocSensores-
dc.subject.agrovocSensors-
dc.subject.proposalÍndice de reproducción cromáticaspa
dc.subject.proposalColor Rendering Indexspa
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_28279-
dc.description.researchgroupidCOL0010717spa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
VargasJesus_2015_ClassificationArtificialLight.pdfArtículo de investigación1.7 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons