Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/30378
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Nagar, Daya Krishna | - |
dc.contributor.author | Sepulveda Murillo, Fabio Humberto | - |
dc.date.accessioned | 2022-09-02T17:24:10Z | - |
dc.date.available | 2022-09-02T17:24:10Z | - |
dc.date.issued | 2011 | - |
dc.identifier.issn | 0041-6932 | - |
dc.identifier.uri | https://hdl.handle.net/10495/30378 | - |
dc.description.abstract | ABSTRACT: The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1ν1 − 1 x2ν2 − 11F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1 + X2 and 2 √(X1 X2). The density function of 2 √(X1 X2) is represented in terms of modified Bessel function of the second kind. We also show that for ν1 − ν2 = 1/2, 2 √(X1 X2) follows a confluent hypergeometric function kind 1 distribution. | spa |
dc.format.extent | 11 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | Unión Matemática Argentina | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.rights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/2.5/co/ | * |
dc.title | Properties of the bivariate confluent hypergeometric function kind 1 distribution | spa |
dc.type | info:eu-repo/semantics/article | spa |
dc.publisher.group | Análisis Multivariado | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.identifier.eissn | 1669-9637 | - |
oaire.citationtitle | Revista de la Unión Matemática Argentina | spa |
oaire.citationstartpage | 11 | spa |
oaire.citationendpage | 21 | spa |
oaire.citationvolume | 52 | spa |
oaire.citationissue | 1 | spa |
dc.rights.creativecommons | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.publisher.place | Bahía Blanca, Argentina | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/ART | spa |
dc.type.local | Artículo de investigación | spa |
dc.subject.lemb | Distribución hipergeométrica | - |
dc.subject.lemb | Hypergeometric distribution | - |
dc.subject.lemb | Funciones hipergeométricas | - |
dc.subject.lemb | Functions, hypergeometric | - |
dc.description.researchgroupid | COL0000532 | spa |
dc.relation.ispartofjournalabbrev | Rev. Unión Mat. Argent. | spa |
Aparece en las colecciones: | Artículos de Revista en Ciencias Exactas y Naturales |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
NagarDaya_2011_PropertiesBivariateConfluent .pdf | Artículo de investigación | 160.29 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons