Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/32201
Título : Predicting the affinity of compstatin peptide with non-natural amino acids to human C3c protein by scoring molecular dynamics simulations
Autor : Muñoz Gomez, Kelly Yohana
metadata.dc.contributor.advisor: Cossio Tejada, Pilar
Restrepo Cardenas, Johans
Ochoa, Rodrigo
metadata.dc.subject.*: Peptides
Amino acids
Complement C3c
Molecular dynamics simulation
Péptidos
Aminoácidos
Complemento C3c
Simulación de dinámica molecular
http://id.nlm.nih.gov/mesh/D010455
http://id.nlm.nih.gov/mesh/D000596
http://id.nlm.nih.gov/mesh/D015932
http://id.nlm.nih.gov/mesh/D056004
Fecha de publicación : 2022
Resumen : ABSTRAC: Peptides are chemical entities composed of natural and non-natural amino acids that have been used successfully as drugs, vaccines, biomarkers, among others. However, these can be easily cleaved and degraded by proteases, where their breaking of a chemical bond in peptides gives smaller molecules or radicals, causing instability in some biological environments when we use peptides therapeutically or as medicines. One possible solution is the use of peptides with non-natural amino acids (NNAA). In the present study, we assessed the prediction of affinities in complexes between human Complement component 3 (C3c) protein bound to multiple compstatin peptide analogs with NNAAs. We used molecular dynamics simulations and six scoring functions to correlate the average score with the experimental binding data obtained from previous studies. Several correlation coefficients above 0.7 and one above 0.85 were detected, indicating an excellent correlation between these two variables. We found the highest Spearman correlation for the Nnscore and Cyscore scoring function, suggesting that these are the most adequate for ranking the binding of modified peptides to a protein target.
Aparece en las colecciones: Maestrías de la Facultad de Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
MuñozKelly_2022_PredictingAffinityPeptide.pdfTesis de maestría15.54 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons