Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/32201
Título : | Predicting the affinity of compstatin peptide with non-natural amino acids to human C3c protein by scoring molecular dynamics simulations |
Autor : | Muñoz Gomez, Kelly Yohana |
metadata.dc.contributor.advisor: | Cossio Tejada, Pilar Restrepo Cardenas, Johans Ochoa, Rodrigo |
metadata.dc.subject.*: | Peptides Amino acids Complement C3c Molecular dynamics simulation Péptidos Aminoácidos Complemento C3c Simulación de dinámica molecular http://id.nlm.nih.gov/mesh/D010455 http://id.nlm.nih.gov/mesh/D000596 http://id.nlm.nih.gov/mesh/D015932 http://id.nlm.nih.gov/mesh/D056004 |
Fecha de publicación : | 2022 |
Resumen : | ABSTRAC: Peptides are chemical entities composed of natural and non-natural amino acids that have been used successfully as drugs, vaccines, biomarkers, among others. However, these can be easily cleaved and degraded by proteases, where their breaking of a chemical bond in peptides gives smaller molecules or radicals, causing instability in some biological environments when we use peptides therapeutically or as medicines. One possible solution is the use of peptides with non-natural amino acids (NNAA). In the present study, we assessed the prediction of affinities in complexes between human Complement component 3 (C3c) protein bound to multiple compstatin peptide analogs with NNAAs. We used molecular dynamics simulations and six scoring functions to correlate the average score with the experimental binding data obtained from previous studies. Several correlation coefficients above 0.7 and one above 0.85 were detected, indicating an excellent correlation between these two variables. We found the highest Spearman correlation for the Nnscore and Cyscore scoring function, suggesting that these are the most adequate for ranking the binding of modified peptides to a protein target. |
Aparece en las colecciones: | Maestrías de la Facultad de Ciencias Exactas y Naturales |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
MuñozKelly_2022_PredictingAffinityPeptide.pdf | Tesis de maestría | 15.54 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons