Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/37286
Título : Characterization theorems for the spaces of derivations of evolution algebras associated to graphs
Autor : Rodiño Montoya, Mary Luz
Cadavid Salazar, Paula Andrea
Rodríguez, Pablo Martín
metadata.dc.subject.*: Ecuaciones de evolución
Evolution equations
Teoría de grafos
Graph theory
Álgebra
Algebra
Fecha de publicación : 2020
Editorial : Taylor & Francis
Citación : Paula Cadavid, Mary Luz Rodiño Montoya & Pablo M. Rodriguez (2020) Characterization theorems for the spaces of derivations of evolution algebras associated to graphs, Linear and Multilinear Algebra, 68:7, 1340-1354, DOI: 10.1080/03081087.2018.1541962
Resumen : ABSTRACT: It is well-known that the space of derivations of n-dimensional evolution algebras with non-singular matrices is zero. On the other hand, the space of derivations of evolution algebras with matrices of rank n−1 have also been completely described in the literature. In this work, we provide a complete description of the space of derivations of evolution algebras associated to graphs, depending on the twin partition of the graph. For graphs without twin classes with at least three elements, we prove that the space of derivations of the associated evolution algebra is zero. Moreover, we describe the spaces of derivations for evolution algebras associated to the remaining families of finite graphs. It is worth pointing out that our analysis includes examples of finite dimensional evolution algebras with matrices of any rank.
metadata.dc.identifier.eissn: 1563-5139
ISSN : 0308-1087
metadata.dc.identifier.doi: 10.1080/03081087.2018.1541962
Aparece en las colecciones: Artículos de Revista en Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RodiñoLuzMarina_2020_CharacterizationTheoremsSpaces.pdfArtículo de investigación1.51 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons