Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/36240
Título : Acoustic animal identification using unsupervised learning
Autor : Guerrero Muriel, María José
Bedoya Acevedo, Carol
López Hincapié, José David
Isaza Narváez, Claudia Victoria
Daza Rojas, Juan Manuel
metadata.dc.subject.*: Vocalización Animal
Vocalization, Animal
Especies
Species
Sonido
Sound
Diversidad biológica
Biological diversity
Paisaje sonoro
Fecha de publicación : 2023
Editorial : Wiley; British Ecological Society
Citación : M. J. Guerrero, C. L. Bedoya, J. D. López, J. M. Daza, and C. Isaza, “Acoustic animal identification using unsupervised learning,” Methods Ecol. Evol., vol. 14, no. 6, pp. 1500–1514, 2023, doi: 10.1111/2041-210X.14103.
Resumen : ABSTRACT: 1. Passive acoustic monitoring is usually presented as a complementary approach to monitoring wildlife communities and assessing ecosystem conditions. Automaticspecies detection methods support biodiversity monitoring and analysis by providing information on the presence–absence of species, which allows understanding the ecosystem structure. Therefore, different alternatives have been proposed to identify species. However, the algorithms are parameterized to identify specific species. Analysing multiple species would help to monitor and quantify biodiversity, as it includes the different taxonomic groups present in the soundscape. 2. We present an unsupervised methodology for multi-species call recognition from ecological soundscapes. The proposal is based on a clustering algorithm, specifically the learning algorithm for multivariate data analysis (LAMDA) 3pi algorithm, which automatically suggests the number of clusters associated with the sonotypes. Emphasis was made on improving the segmentation of the audio to analyse the whole soundscape without parameterizing the algorithm according to each taxonomic group. 3. To estimate the performance of our proposal, we used four datasets from different locations, years and habitats. These datasets contain sounds from the four major taxonomic groups that dominate terrestrial soundscapes (birds, amphibians, mammals and insects) in audible and ultrasonic spectra. The methodology presents performances between 75% and 96% in presence–absence species recognition. 4. Using the clusters proposed by our methodology, the whole soundscape biodiversity was measured and compared with the estimate of four acoustic indices (ACI, NP, SO and BI). Our approach performs biodiversity assessments similar to acoustic indices with the advantage of providing information about acoustic communities without the need for prior knowledge of the species present in the audio recordings.
metadata.dc.identifier.eissn: 2041-210X
metadata.dc.identifier.doi: 10.1111/2041-210X.14103
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
GuerreroMaria_2023_AcousticAnimalIdentification.pdfArtículo de investigación4.82 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons