Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/36240
Título : | Acoustic animal identification using unsupervised learning |
Autor : | Guerrero Muriel, María José Bedoya Acevedo, Carol López Hincapié, José David Isaza Narváez, Claudia Victoria Daza Rojas, Juan Manuel |
metadata.dc.subject.*: | Vocalización Animal Vocalization, Animal Especies Species Sonido Sound Diversidad biológica Biological diversity Paisaje sonoro |
Fecha de publicación : | 2023 |
Editorial : | Wiley; British Ecological Society |
Citación : | M. J. Guerrero, C. L. Bedoya, J. D. López, J. M. Daza, and C. Isaza, “Acoustic animal identification using unsupervised learning,” Methods Ecol. Evol., vol. 14, no. 6, pp. 1500–1514, 2023, doi: 10.1111/2041-210X.14103. |
Resumen : | ABSTRACT: 1. Passive acoustic monitoring is usually presented as a complementary approach to monitoring wildlife communities and assessing ecosystem conditions. Automaticspecies detection methods support biodiversity monitoring and analysis by providing information on the presence–absence of species, which allows understanding the ecosystem structure. Therefore, different alternatives have been proposed to identify species. However, the algorithms are parameterized to identify specific species. Analysing multiple species would help to monitor and quantify biodiversity, as it includes the different taxonomic groups present in the soundscape. 2. We present an unsupervised methodology for multi-species call recognition from ecological soundscapes. The proposal is based on a clustering algorithm, specifically the learning algorithm for multivariate data analysis (LAMDA) 3pi algorithm, which automatically suggests the number of clusters associated with the sonotypes. Emphasis was made on improving the segmentation of the audio to analyse the whole soundscape without parameterizing the algorithm according to each taxonomic group. 3. To estimate the performance of our proposal, we used four datasets from different locations, years and habitats. These datasets contain sounds from the four major taxonomic groups that dominate terrestrial soundscapes (birds, amphibians, mammals and insects) in audible and ultrasonic spectra. The methodology presents performances between 75% and 96% in presence–absence species recognition. 4. Using the clusters proposed by our methodology, the whole soundscape biodiversity was measured and compared with the estimate of four acoustic indices (ACI, NP, SO and BI). Our approach performs biodiversity assessments similar to acoustic indices with the advantage of providing information about acoustic communities without the need for prior knowledge of the species present in the audio recordings. |
metadata.dc.identifier.eissn: | 2041-210X |
metadata.dc.identifier.doi: | 10.1111/2041-210X.14103 |
Aparece en las colecciones: | Artículos de Revista en Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
GuerreroMaria_2023_AcousticAnimalIdentification.pdf | Artículo de investigación | 4.82 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons